Prompt Title: NLP

Created 1 year ago
Votes 0
Views 368 times
0
Human: import pandas as pd import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import PCA from nltk.tokenize.casual import casual_tokenize # Open and read the file with open('/content/drive/MyDrive/Colab Notebooks/pass_task_3/articles+4.txt', 'r') as f: data = f.read() # Assume each line represents a separate document documents = data.split('\n') tfidf = TfidfVectorizer(tokenizer=casual_tokenize) tfidf_docs = tfidf.fit_transform(raw_documents=documents).toarray() tfidf_docs = pd.DataFrame(tfidf_docs) tfidf_docs = tfidf_docs - tfidf_docs.mean() # List of dimensions to test dimensions = [2, 4, 8, 16, 32] # Train PCA models with different dimensions and compare explained variance ratio explained_variances = {} for dim in dimensions: pca = PCA(n_components=dim) pca = pca.fit(tfidf_docs) total_explained_variance = np.sum(pca.explained_variance_ratio_) explained_variances[dim] = total_explained_variance print(f"Total explained variance for {dim} dimensions: {total_explained_variance:.3f}") # Find and print the best number of dimensions # The code compares the "explained variance" for different numbers of dimensions. # The explained variance tells how much of the original data's structure and information is maintained after reducing the dimensions using PCA best_dim = max(explained_variances, key=explained_variances.get) print(f"Best number of dimensions: {best_dim} with total explained variance: {explained_variances[best_dim]:.3f}") How do I incoperate this code to find the accuracy and change sms.spam to data X_train, X_test, y_train, y_test = train_test_split(pca_topic_vectors.values, sms.spam, test_size=0.3, random_state=271828) lda = LDA(n_components=1) lda.fit(X_train, y_train) lda.score(X_test, y_test).round(3) lda = LDA(n_components=1) scores = cross_val_score(lda, pca_topic_vectors, sms.spam, cv=10) "Accuracy: {:.3f} (+/-{:.3f})".format(scores.mean(), scores.std() * 2)
ChatGPT:

You can modify the code to find the accuracy by incorporating the LDA model and cross-validation. First, import the necessary modules and split the data into training and testing sets. Then, fit the LDA model and evaluate its accuracy using cross-validation. Here's the modified code:

python
import pandas as pd import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import PCA from nltk.tokenize.casual import casual_tokenize from sklearn.model_selection import train_test_split, cross_val_score from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA # Open and read the file with open('/content/drive/MyDrive/Colab Notebooks/pass_task_3/articles+4.txt', 'r') as f: data = f.read() # Assume each line represents a separate document documents = data.split('\n') tfidf = TfidfVectorizer(tokenizer=casual_tokenize) tfidf_docs = tfidf.fit_transform(raw_documents=documents).toarray() tfidf_docs = pd.DataFrame(tfidf_docs) tfidf_docs = tfidf_docs - tfidf_docs.mean() # List of dimensions to test dimensions = [2, 4, 8, 16, 32] # Train PCA models with different dimensions and compare explained variance ratio explained_variances = {} for dim in dimensions: pca = PCA(n_components=dim) pca = pca.fit(tfidf_docs) total_explained_variance = np.sum(pca.explained_variance_ratio_) explained_variances[dim] = total_explained_variance print(f"Total explained variance for {dim} dimensions: {total_explained_variance:.3f}") # Find and print the best number of dimensions best_dim = max(explained_variances, key=explained_variances.get) print(f"Best number of dimensions: {best_dim} with total explained variance: {explained_variances[best_dim]:.3f}") # Assuming you have the target labels (0 for not spam and 1 for spam) for each document in a variable called 'labels' # Replace sms.spam with labels labels = [...] # Apply PCA with the best number of dimensions pca = PCA(n_components=best_dim) pca_topic_vectors = pca.fit_transform(tfidf_docs) X_train, X_test, y_train, y_test = train_test_split(pca_topic_vectors, labels, test_size=0.3, random_state=271828) lda = LDA(n_components=1) lda.fit(X_train, y_train) score = lda.score(X_test, y_test).round(3) print(f"Accuracy: {score}") lda = LDA(n_components=1) scores = cross_val_score(lda, pca_topic_vectors, labels, cv=10) print("Accuracy: {:.3f} (+/-{:.3f})".format(scores.mean(), scores.std() * 2))

Please note that you need to replace sms.spam with the target labels for each document. I have added a placeholder variable called labels. You need to replace it with the actual labels for each document.

Human: I want to compare the accuracy for each dimension and change sms to documents import pandas as pd import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import PCA from nltk.tokenize.casual import casual_tokenize from sklearn.model_selection import train_test_split, cross_val_score from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA # Open and read the file with open('/content/drive/MyDrive/Colab Notebooks/pass_task_3/articles+4.txt', 'r') as f: data = f.read() lda = LDA(n_components=1) lda = lda.fit(tfidf_docs, sms.spam) sms['lda_spaminess'] = lda.predict(tfidf_docs) ((sms.spam - sms.lda_spaminess) ** 2.).sum() ** .5 (sms.spam == sms.lda_spaminess).sum() from sklearn.model_selection import cross_val_score lda = LDA(n_components=1) scores = cross_val_score(lda, tfidf_docs, sms.spam, cv=5) "Accuracy: {:.2f} (+/-{:.2f})".format(scores.mean(), scores.std() * 2) X_train, X_test, y_train, y_test = train_test_split(pca_topic_vectors.values, sms.spam, test_size=0.3, random_state=271828) lda = LDA(n_components=1) lda.fit(X_train, y_train) lda.score(X_test, y_test).round(3) scores = cross_val_score(lda, pca_topic_vectors, sms.spam, cv=10) "Accuracy: {:.3f} (+/-{:.3f})".format(scores.mean(), scores.std() * 2)
ChatGPT:

To compare the accuracy for each dimension, you can use a loop to iterate through the dimensions and perform cross-validation for each one. Here's the modified code, which also replaces sms.spam with documents:

python
import pandas as pd import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import PCA from nltk.tokenize.casual import casual_tokenize from sklearn.model_selection import train_test_split, cross_val_score from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA # Open and read the file with open('/content/drive/MyDrive/Colab Notebooks/pass_task_3/articles+4.txt', 'r') as f: data = f.read() # Assume each line represents a separate document documents = data.split('\n') tfidf = TfidfVectorizer(tokenizer=casual_tokenize) tfidf_docs = tfidf.fit_transform(raw_documents=documents).toarray() tfidf_docs = pd.DataFrame(tfidf_docs) tfidf_docs = tfidf_docs - tfidf_docs.mean() # Assuming you have the target labels (0 for not spam and 1 for spam) for each document in a variable called 'labels' # Replace sms.spam with labels labels = [...] # List of dimensions to test dimensions = [2, 4, 8, 16, 32] # Train PCA models with different dimensions and compare the accuracy accuracies = {} for dim in dimensions: pca = PCA(n_components=dim) pca_topic_vectors = pca.fit_transform(tfidf_docs) lda = LDA(n_components=1) scores = cross_val_score(lda, pca_topic_vectors, labels, cv=5) mean_accuracy = scores.mean() accuracies[dim] = mean_accuracy print(f"Accuracy for {dim} dimensions: {mean_accuracy:.3f} (+/-{scores.std() * 2:.3f})") # Find and print the best number of dimensions based on accuracy best_dim = max(accuracies, key=accuracies.get) print(f"Best number of dimensions: {best_dim} with accuracy: {accuracies[best_dim]:.3f}")

Please note that you need to replace sms.spam with the target labels for each document. I have added a placeholder variable called labels. You need to replace it with the actual labels for each document.

Human: --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-5-fdbaa72f98b4> in <cell line: 31>() 34 35 lda = LDA(n_components=1) ---> 36 scores = cross_val_score(lda, pca_topic_vectors, labels, cv=5) 37 mean_accuracy = scores.mean() 38 3 frames /usr/local/lib/python3.9/dist-packages/sklearn/utils/validation.py in check_consistent_length(*arrays) 395 uniques = np.unique(lengths) 396 if len(uniques) > 1: --> 397 raise ValueError( 398 "Found input variables with inconsistent numbers of samples: %r" 399 % [int(l) for l in lengths] ValueError: Found input variables with inconsistent numbers of samples: [4552, 1]
ChatGPT:

The error you're encountering is because the length of labels is not consistent with the length of your data (pca_topic_vectors). It appears that the labels variable is a single value instead of an array with the same length as the number of documents.

You need to make sure that the labels variable is an array or list of labels with the same length as the number of documents. Here's a sample code snippet to create a list of random labels for demonstration purposes:

python
import random # Replace this part with the actual logic to get labels for your documents labels = [random.randint(0, 1) for _ in range(len(documents))]

Replace the labels = [...] line in the previous code example with the above code snippet or use the appropriate logic to create a list of labels for your documents.

Remember that the sample code snippet creates random labels and should be replaced with the actual logic to get the correct labels for your documents.

Human: pca = PCA(n_components=16) pca = pca.fit(tfidf_docs) pca_topic_vectors = pca.transform(tfidf_docs) columns = ['topic{}'.format(i) for i in range(pca.n_components)] pca_topic_vectors = pd.DataFrame(pca_topic_vectors, columns=columns, index=index) pca_topic_vectors.round(3).head(6) loop this for each dimension
ChatGPT:

You can use a loop to iterate through the dimensions and perform PCA transformation for each one. Here's the modified code:

python
import pandas as pd import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import PCA from nltk.tokenize.casual import casual_tokenize # Open and read the file with open('/content/drive/MyDrive/Colab Notebooks/pass_task_3/articles+4.txt', 'r') as f: data = f.read() # Assume each line represents a separate document documents = data.split('\n') tfidf = TfidfVectorizer(tokenizer=casual_tokenize) tfidf_docs = tfidf.fit_transform(raw_documents=documents).toarray() tfidf_docs = pd.DataFrame(tfidf_docs) tfidf_docs = tfidf_docs - tfidf_docs.mean() # List of dimensions to test dimensions = [2, 4, 8, 16, 32] # Train PCA models with different dimensions and transform the data for dim in dimensions: pca = PCA(n_components=dim) pca = pca.fit(tfidf_docs) pca_topic_vectors = pca.transform(tfidf_docs) columns = ['topic{}'.format(i) for i in range(pca.n_components)] pca_topic_vectors = pd.DataFrame(pca_topic_vectors, columns=columns) print(f"PCA topic vectors for {dim} dimensions:") print(pca_topic_vectors.round(3).head(6)) print()

This code will print the first 6 rows of the PCA topic vectors for each dimension.

Human: tfidf = TfidfVectorizer(tokenizer=casual_tokenize) tfidf_docs = tfidf.fit_transform(raw_documents=documents).toarray() tfidf_docs = pd.DataFrame(tfidf_docs) tfidf_docs = tfidf_docs - tfidf_docs.mean() What does this do in one sentence
ChatGPT:

This code computes the term frequency-inverse document frequency (TF-IDF) matrix for the given documents and then centers the data by subtracting the mean of each feature.

avatar
Iman
Shared 2 prompts
Created 1 year ago

Leave a Comment

Related Tag Prompts

0
0
PyTorch use cases.
1 year ago 2023-03-17 09:46:29 Anekket
0
0
Python: Word Position.
1 year ago 2023-03-17 19:31:15 Daniel V
0
0
Masterarbeit
1 year ago 2023-04-01 11:40:07 GPT
0
0
NLP
1 year ago 2023-10-11 03:23:05 Dvid
0
0
NLP2
1 year ago 2023-10-11 03:26:15 David
0
0
NLP3
1 year ago 2023-10-11 03:27:40 David