Prompt Title: Excel Scientific Notation.

Created 1 year ago
Votes 0
Views 169 times
0

Prompt Detail:

To determine whether a value in a Pandas DataFrame is in scientific notation, even if it contains string numbers, you can use a regular expression to check if it matches the pattern of scientific notation. Here's an example code snippet:

python
import pandas as pd import numpy as np # create a sample dataframe df = pd.DataFrame({ 'A': [1.23e6, '456', 7.89e-4, '1.2e+03', 'foo'], 'B': [1.23e6, 456, 7.89e-4, 1.2e+03, 'bar'] }) # define a regular expression to match scientific notation sci_notation_pattern = r'^[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?$' # define a lambda function to check for scientific notation def is_scientific_notation(x): if isinstance(x, (int, float, np.number)): # if the value is a number, convert to a string first return bool(re.match(sci_notation_pattern, str(x))) elif isinstance(x, str): # if the value is a string, check if it matches the pattern directly return bool(re.match(sci_notation_pattern, x)) else: # for other types, assume it's not in scientific notation return False # apply the function to each value in the dataframe sci_notation_mask = df.applymap(is_scientific_notation) # print the resulting mask print(sci_notation_mask)

This will produce a boolean mask indicating which values in the DataFrame are in scientific notation. The regular expression used in this example matches the standard format for scientific notation, allowing for an optional sign (+/-) before the exponent and optional decimal points. The lambda function checks whether the value is a number or a string and applies the regular expression accordingly. In the example above, the resulting mask would be:

graphql
A B 0 True True 1 False False 2 True True 3 True True 4 False False

This indicates that the values in columns "A" with indices 0, 2, and 3 are in scientific notation, while all other values are not.

avatar
Rashid Mahmood
Shared 2 prompts
Created 1 year ago

Leave a Comment

Related Tag Prompts

0
0