Prompt Title: ASE334 Propulsion Question

Created 1 year ago
Votes 0
Views 160 times
Fun
0

Prompt Detail:

Next, we can calculate the nozzle area ratio:

AeAt=1Me(2y+1(1+y12Me2))y+12(y1)\frac{A_e}{A_t} = \frac{1}{M_e}\left(\frac{2}{y+1}\left(1 + \frac{y-1}{2}M_e^2\right)\right)^{\frac{y+1}{2(y-1)}}

Substituting the given values, we get:

AeAt=11.68(21.4+1(1+1.412(1.68)2))1.4+12(1.41)2.28\frac{A_e}{A_t} = \frac{1}{1.68}\left(\frac{2}{1.4+1}\left(1 + \frac{1.4-1}{2}(1.68)^2\right)\right)^{\frac{1.4+1}{2(1.4-1)}} \approx 2.28

Now, we can use the following equation to calculate the uninstalled thrust:

Tu=(m˙a+m˙f)Vem˙a(VVe)T_u = \left(\dot{m}_a + \dot{m}_f\right)V_e - \dot{m}_a(V_{\infty} - V_e)

where $\dot{m}_a$ is the mass flow rate of air, $\dot{m}f$ is the mass flow rate of fuel, $V_e$ is the exhaust velocity and $V{\infty}$ is the free stream velocity.

The exhaust velocity can be calculated as:

Ve=MeγRTeV_e = M_e\sqrt{\gamma R T_e}

Substituting the given values, we get:

Ve=1.681.4×287×1200801.3 m/sV_e = 1.68\sqrt{1.4\times 287 \times 1200} \approx 801.3 \text{ m/s}

The free stream velocity can be calculated as:

V=MγRTV_{\infty} = M_{\infty}\sqrt{\gamma R T_{\infty}}

Substituting the given values, we get:

V=0.81.4×287×230222.8 m/sV_{\infty} = 0.8\sqrt{1.4\times 287 \times 230} \approx 222.8 \text{ m/s}

Now, we can calculate the uninstalled thrust:

Tu=(1.63 kg/s+0.03 kg/s)×801.3 m/s1.63 kg/s×(222.8 m/s801.3 m/s)187.7 kNT_u = \left(1.63\text{ kg/s} + 0.03\text{ kg/s}\right) \times 801.3 \text{ m/s} - 1.63\text{ kg/s} \times (222.8 \text{ m/s} - 801.3 \text{ m/s}) \approx 187.7 \text{ kN}

Therefore, the uninstalled thrust of the engine is approximately 187.7 kN.

avatar
ssas
Shared 2 prompts
Created 1 year ago

Leave a Comment

Related Tag Prompts

0
0
Processing image generator.
1 year ago 2023-03-27 17:47:25 sebinn