Prompt Title: KeyError in Plotting

Created 1 year ago
Votes 0
Views 263 times
0
Human: Output exceeds the size limit. Open the full output data in a text editor --------------------------------------------------------------------------- KeyError Traceback (most recent call last) ~/opt/anaconda3/lib/python3.9/site-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance) 3628 try: -> 3629 return self._engine.get_loc(casted_key) 3630 except KeyError as err: ~/opt/anaconda3/lib/python3.9/site-packages/pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc() ~/opt/anaconda3/lib/python3.9/site-packages/pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: 'country' The above exception was the direct cause of the following exception: KeyError Traceback (most recent call last) /var/folders/ry/2y_m56cd2j195t85vbq3xg340000gn/T/ipykernel_32479/4139714144.py in <module> 22 23 # Create the initial plot ---> 24 country_list = data_frames_combined['country'].unique().tolist() 25 country_list.sort() ... -> 3631 raise KeyError(key) from err 3632 except TypeError: 3633 # If we have a listlike key, _check_indexing_error will raise KeyError: 'country'
ChatGPT:

It looks like you are trying to create a plot and encountering a KeyError related to the 'country' column. The error is occurring because the 'country' column cannot be found in the data_frames_combined DataFrame. To resolve this issue, please ensure that:

  1. The 'country' column exists in the original data source.
  2. If the column exists but has a different name, make sure to update the column name in the code accordingly.

If you provide the first few rows of your data_frames_combined DataFrame or information about its structure, I can help you troubleshoot the issue further. You can do this by using the head() function:

python
print(data_frames_combined.head())

This will give you a better understanding of the available columns in your DataFrame, allowing you to identify any discrepancies in the column names.

Human: i have this code : import pandas as pd import numpy as np import matplotlib.pyplot as plt import ipywidgets as widgets from functools import reduce # autoreload modules when code is run %load_ext autoreload %autoreload 2 # user written modules import dataproject # import the API for WorldBank-data from pandas_datareader import wb # Setting up list of ISO-codes of countries where we are going to import data from using the API countries_ISO_list = ['ABW', 'AFG', 'AGO', 'ALB', 'AND', 'ARE', 'ARG', 'ARM', 'ASM', 'AUS', 'AUT', 'AZE', 'BDI', 'BEL', 'BEN', 'BFA', 'BGD', 'BGR', 'BHR', 'BHS', 'BIH', 'BLR', 'BLZ', 'BMU', 'BOL', 'BRA', 'BRB', 'BRN', 'BTN', 'BWA', 'CAF', 'CAN', 'CHE', 'CHL', 'CHN', 'CIV', 'CMR', 'COD', 'COG', 'COL', 'COM', 'CPV', 'CRI', 'CUB', 'CUW', 'CYM', 'CYP', 'CZE', 'DEU', 'DJI', 'DMA', 'DNK', 'DOM', 'DZA', 'ECU', 'EGY', 'ERI', 'ESP', 'EST', 'ETH', 'FIN', 'FJI', 'FRA', 'FRO', 'GAB', 'GBR', 'GEO', 'GHA', 'GIB', 'GIN', 'GMB', 'GNB', 'GNQ', 'GRC', 'GRD', 'GRL', 'GTM', 'GUY', 'HKG', 'HND', 'HRV', 'HTI', 'HUN', 'IDN', 'IMN', 'IND', 'IRL', 'IRN', 'IRQ', 'ISL', 'ISR', 'ITA', 'JAM', 'JOR', 'JPN', 'KAZ', 'KEN', 'KGZ', 'KHM', 'KIR', 'KNA', 'KOR', 'KWT', 'LBN', 'LBR', 'LBY', 'LCA', 'LIE', 'LKA', 'LSO', 'LTU', 'LUX', 'LVA', 'MAC', 'MAF', 'MAR', 'MCO', 'MDA', 'MDG', 'MDV', 'MEX', 'MKD', 'MLI', 'MLT', 'MMR', 'MNE', 'MNG', 'MOZ', 'MRT', 'MUS', 'MWI', 'MYS', 'NAM', 'NCL', 'NER', 'NGA', 'NIC', 'NLD', 'NOR', 'NPL', 'NRU', 'NZL', 'OMN', 'PAK', 'PAN', 'PER', 'PHL', 'PLW', 'PNG', 'POL', 'PRI', 'PRK', 'PRT', 'PRY', 'PSE', 'PYF', 'QAT', 'ROU', 'RUS', 'RWA', 'SAU', 'SDN', 'SEN', 'SGP', 'SLE', 'SLV', 'SMR', 'SOM', 'SRB', 'SSD', 'STP', 'SUR', 'SVK', 'SVN', 'SWE', 'SWZ', 'SXM', 'SYC', 'SYR', 'TCA', 'TCD', 'TGO', 'THA', 'TJK', 'TKM', 'TLS', 'TON', 'TTO', 'TUN', 'TUR', 'TUV', 'TZA', 'UGA', 'UKR', 'URY', 'USA', 'UZB', 'VCT', 'VEN', 'VGB', 'VIR', 'VNM', 'VUT', 'WSM', 'YEM', 'ZAF', 'ZMB', 'ZWE'] # Importing the different DataFrames from the WorldBank using the API from the lecture and resetting the index for each DataFrame wb_arable_land = wb.download(indicator='AG.LND.ARBL.HA', country= countries_ISO_list, start=1989, end=2019) wb_arable_land = wb_arable_land.reset_index() wb_labor_force = wb.download(indicator='SL.TLF.TOTL.IN', country= countries_ISO_list, start=1989, end=2019) wb_labor_force = wb_labor_force.reset_index() wb_emp_ag = wb.download(indicator='SL.AGR.EMPL.ZS', country= countries_ISO_list, start=1989, end=2019) wb_emp_ag = wb_emp_ag.reset_index() wb_gdp_cap = wb.download(indicator='NY.GDP.PCAP.CD', country= countries_ISO_list, start=1989, end=2019) wb_gdp_cap = wb_gdp_cap.reset_index() # Resetting the countries as the index for each DataFrame wb_arable_land = wb_arable_land.set_index('country') wb_labor_force = wb_labor_force.set_index('country') wb_emp_ag = wb_emp_ag.set_index('country') wb_gdp_cap = wb_gdp_cap.set_index('country') # changing the data-type of the 'year'-column to an integer wb_arable_land.year = wb_arable_land.year.astype(int) wb_labor_force.year = wb_labor_force.year.astype(int) wb_emp_ag.year = wb_emp_ag.year.astype(int) wb_gdp_cap.year = wb_gdp_cap.year.astype(int) # Merging all the DataFrames into one big one data_frames_list = [wb_arable_land, wb_labor_force, wb_emp_ag, wb_gdp_cap] data_frames_combined = reduce(lambda left, right: pd.merge(left, right, on = ['country', 'year'], how = 'inner'), data_frames_list) # Renaming the columns namedict = { 'AG.LND.ARBL.HA':'Arable_Land', 'SL.TLF.TOTL.IN':'Labor_Force', 'SL.AGR.EMPL.ZS':'Empl_in_agri_in_%_of_all_empl', 'NY.GDP.PCAP.CD':'GDP_per_capita'} data_frames_combined.rename(columns=namedict, inplace=True) # Dropping all rows that contain empty values (NAN) data_frames_combined.dropna(inplace=True) # Rounding the floats in columns 'Empl_in_agri_in_%_of_all_empl' and 'GDP_per_capita' data_frames_combined['Empl_in_agri_in_%_of_all_empl'] = data_frames_combined['Empl_in_agri_in_%_of_all_empl'].round(2) data_frames_combined['GDP_per_capita'] = data_frames_combined['GDP_per_capita'].round(2) data_frames_combined.head(10) and i want an interactive plot with the different countries that gives me the gdp per capita over time
ChatGPT:

To create an interactive plot of GDP per capita over time for different countries, you can use the plotly library. First, you'll need to install it if you haven't already:

bash
pip install plotly

Then, modify your code to create the interactive plot:

python
import plotly.express as px # Convert the index 'country' back to a column data_frames_combined = data_frames_combined.reset_index() # Create an interactive plot of GDP per capita over time for different countries fig = px.line(data_frames_combined, x="year", y="GDP_per_capita", color="country", title="GDP per capita over time") # Show the plot fig.show()

In this code snippet, we first reset the index so that 'country' becomes a column again. Then, we use the plotly.express module to create an interactive line plot with the year on the x-axis, GDP per capita on the y-axis, and a separate line for each country. Finally, we display the plot using fig.show().

Human: i want an interactive graph so i can choose the country
ChatGPT:

To create an interactive graph where you can choose the country from a dropdown menu, you can use the ipywidgets library in combination with plotly.graph_objects. First, you'll need to install ipywidgets if you haven't already:

bash
pip install ipywidgets

Now, modify your code to create the interactive graph with a country selection dropdown:

python
import plotly.graph_objects as go from ipywidgets import interact # Function to create the plot for the selected country def plot_gdp_per_capita(country): # Filter the data for the selected country country_data = data_frames_combined[data_frames_combined['country'] == country] # Create the plot fig = go.Figure() fig.add_trace(go.Scatter(x=country_data['year'], y=country_data['GDP_per_capita'], mode='lines+markers', name=country)) # Set the plot title and axis labels fig.update_layout(title=f'GDP per capita over time for {country}', xaxis_title='Year', yaxis_title='GDP per capita') # Show the plot fig.show() # Create a dropdown menu to select a country country_list = data_frames_combined['country'].unique().tolist() country_list.sort() interact(plot_gdp_per_capita, country=widgets.Dropdown(options=country_list, value=country_list[0], description='Country:'))

In this code snippet, we define a function plot_gdp_per_capita that takes a country name as an input and creates a line plot of GDP per capita over time for that country using plotly.graph_objects. Then, we create a dropdown menu with the ipywidgets.interact function, where the menu options are the unique countries in the data_frames_combined DataFrame. When you select a country from the dropdown menu, the plot_gdp_per_capita function is called with the selected country, and the corresponding plot is displayed.

Human: now i want the same plot but i want to compare the number of percentage of people working in agriculture compared to the gdp per capita
ChatGPT:

To create an interactive plot comparing the percentage of people working in agriculture to the GDP per capita for a selected country, you can modify the plot_gdp_per_capita function like this:

python
def plot_gdp_per_capita_and_agri_empl(country): # Filter the data for the selected country country_data = data_frames_combined[data_frames_combined['country'] == country] # Create the plot fig = go.Figure() # Add GDP per capita trace (left y-axis) fig.add_trace(go.Scatter(x=country_data['year'], y=country_data['GDP_per_capita'], mode='lines+markers', name='GDP per capita')) # Add percentage of people working in agriculture trace (right y-axis) fig.add_trace(go.Scatter(x=country_data['year'], y=country_data['Empl_in_agri_in_%_of_all_empl'], mode='lines+markers', name='Employment in agriculture (%)', yaxis='y2')) # Set the plot title and axis labels fig.update_layout( title=f'GDP per capita and employment in agriculture for {country}', xaxis_title='Year', yaxis_title='GDP per capita', yaxis2=dict( title='Employment in agriculture (%)', overlaying='y', side='right' ) ) # Show the plot fig.show() # Create a dropdown menu to select a country interact(plot_gdp_per_capita_and_agri_empl, country=widgets.Dropdown(options=country_list, value=country_list[0], description='Country:'))

In this modified function, we add a second trace to the plot for the percentage of people working in agriculture, and we set its yaxis property to 'y2'. Then, we update the layout to include a second y-axis on the right side of the plot for the new trace, with the overlaying property set to 'y' so that it shares the same x-axis with the GDP per capita trace.

When you select a country from the dropdown menu, the plot_gdp_per_capita_and_agri_empl function is called with the selected country, and the corresponding plot comparing the percentage of people working in agriculture to the GDP per capita is displayed.

avatar
Francesco
Shared 1 prompt
Created 1 year ago

Leave a Comment

Related Tag Prompts

271
0
Python Pro
1 year ago 2023-01-19 05:16:28 AIPRM
0
0
MySQL Database Creation.
1 year ago 2023-03-08 12:23:48 Pub
0
0
Cool stuff
1 year ago 2023-03-08 15:49:26 Sivayogeith
0
0
Bajar version de python
1 year ago 2023-03-09 10:48:33 Juanma
0
0
Frappe
1 year ago 2023-03-11 01:40:59 KuuKuu
0
0
0
0
python remote control server
1 year ago 2023-03-11 23:05:25 V0rt
0
0
output
1 year ago 2023-03-14 07:09:17 yuvaraj
0
0
s-parameter processing in python
1 year ago 2023-03-14 14:46:13 jhdo
0
0
Python Landsat data handling.
1 year ago 2023-03-15 13:10:40 nathan
0
0
Python para Ciencia Datos
1 year ago 2023-03-16 08:24:10 pedro
0
0
Following Rotated Logfiles.
1 year ago 2023-03-17 09:05:24 hamid
0
0
Modelo de Negócio.
1 year ago 2023-03-18 01:35:57 reiu
0
0
Django API for Todo
1 year ago 2023-03-18 17:45:33 AbdAlmjed
0
0
python爬虫
1 year ago 2023-03-21 00:23:14 DDL
0
0
Improvment_product_generator
1 year ago 2023-03-21 10:01:17 Matěj Konečný