Prompt Title: Symmetric CRV Expectation Calculation.

Created 1 year ago
Votes 0
Views 442 times
0

Prompt Detail:

To show that E(X) = µ, we can use the following steps:

  1. Using the symmetry of the PDF, we have:

    E(X) = ∫_{-∞}^{∞} x fX(x) dx

    scss
    = ∫_{-∞}^{0} x fX(x) dx + ∫_{0}^{∞} x fX(x) dx = ∫_{0}^{∞} (-x) fX(-x) dx + ∫_{0}^{∞} x fX(x) dx (substituting -x for x in the first integral) = 2 ∫_{0}^{∞} x fX(x) dx
  2. Let Y = X - µ. Then Y is also a CRV with a symmetric PDF, since:

    fY(µ + y) = fX(µ + y - µ) = fX(y) = fX(-(y-µ)) = fY(µ - y)

    Therefore, using the definition of expectation and the substitution Y = X - µ, we have:

    E(X) = E(Y + µ) = E(Y) + µ

  3. Since Y = X - µ is symmetric about 0, we have:

    ∫_{-∞}^{∞} Y fY(Y) dY = 0

    Substituting Y = X - µ and rearranging, we get:

    ∫_{-∞}^{∞} (X - µ) fX(X) dX = µ ∫_{-∞}^{∞} fX(X) dX

    Using the definition of expectation and the fact that fX(X) is a PDF (i.e., integrates to 1), we have:

    E(X) - µ = 0

  4. Combining steps 1 and 3, we get:

    E(X) = 2 ∫_{0}^{∞} x fX(x) dx = 2 ∫_{0}^{∞} (x - µ) fX(x) dx + 2µ ∫_{0}^{∞} fX(x) dx

    scss
    = 2 E(X - µ) + 2µ

    Substituting E(X - µ) = 0 (from step 3), we get:

    E(X) = 2µ

    Therefore, E(X) = µ, which completes the proof.

avatar
Hiranmoy manddal
Shared 1 prompt
Created 1 year ago

Leave a Comment

Related Tag Prompts

208
0
0
0
I'm just trying to study
1 year ago 2023-03-09 02:32:55 Grawg
0
0
Null and Im
1 year ago 2023-03-20 00:32:33 hook
0
0
proving discrete math
1 year ago 2023-03-21 11:18:55 kevin arceno
0
0
y
1 year ago 2023-03-21 23:38:20 aA
0
0
이빨 요정
1 year ago 2023-04-21 06:53:29 lim
0
0
Mat
1 year ago 2023-10-08 11:09:16 Md Bakhtiar Chowdhury
0
0
math
1 year ago 2023-11-06 23:32:26 math
0
0
4
9 months ago 2024-04-09 21:48:35 patrik